Logic in Computer Science:

Modelling and Reasoning about Systems

MICHAEL HUTH
Department of Computing and Information Sciences
Kansas State University, USA.

MARK RYAN
School of Computer Science
University of Birmingham, UK.

www.manharaa.com

www.manharaa.com

o AJLb

Preface

Contents

Acknowledgments

1 Propositional Logic

1.1 Declarative sentences
1.2 Natural deductiono

1.2.1
1.2.2
1.2.3
1.24
1.2.5

Rules for natural deduction
Derived rules
Natural deduction in summary
Provable equivalence
An aside: proof by contradiction

1.3 Propositional logic as a formal language

1.4 Semantics of propositional logic

1.4.1
1.4.2
1.4.3
1.4.4

The meaning of logical connectives
Mathematical induction
Soundness of propositional logic
Completeness of propositional logic

1.5 Normal forms

1.5.1
1.5.2
1.5.3

Semantic equivalence, satisfiability, and validity
Conjunctive normal forms and validity
Horn clauses and satisfiability

1.6 Bibliographicnotes 0oL

2 Predicate Logic

2.1 The need for a richer language

2.2 Predicate logic as a formal language

iii

10
14
15
36
38
41
42
46
55
55
60
65
70
78
78
85
94
98

100
100
106

www.manharaa.com

iv Contents

221 Terms 106
2.22 Formulas o 108
2.2.3 Free and bound variables 113
2.2.4 Substitution oL 115

2.3 Proof theory of predicate logic 119
2.3.1 Natural deductionrules 119
2.3.2 Quantifier equivalences o0 131

2.4 Semantics of predicate logic 139
241 Models 140
2.4.2 Semantic entailment 147
2.4.3 The semantics of equality 149

2.5 Undecidability of predicate logic 152
2.6 Bibliographicnotes o oo 158
3 Verification by Model Checking 160
3.1 Motivation for verification 160
3.2 Syntax of computation tree logic 164
3.3 Semantics of computation tree logic 168
3.3.1 Practical patterns of specifications 177
3.3.2 Important equivalences between CTL formulas 178

3.4 Example: mutual exclusion 181
3.4.1 First modelling attempt 182
3.4.2 Second modelling attempto 183

3.5 A model checking algorithm 184
3.5.1 The labelling algorithm 185
3.5.2 Pseudo-code of the model checking algorithm 189
3.5.3 The ‘state explosion’ problem 190

3.6 The SMV system, 193
3.6.1 Modulesin SMV 00 195
3.6.2 Synchronous and asynchronous composition 196
3.6.3 Mutual exclusion revisited 197
3.6.4 The Alternating Bit protocol 201

3.7 Model checking with fairness 205
3.8 Alternatives and extensions of CTL 207
3.8.1 Linear-time temporal logic. 207
3.82 CTL* e 210
3.8.3 The expressive power of CTL 213

3.9 The fixed-point characterization of CTL 215
3.9.1 Monotone functions 218
3.9.2 The correctness of SATgq 220

www.manharaa.com

3.9.3

Contents

The correctness of SATgy

3.10 Bibliographicnotes

Program Verification
4.1 Why should we specify and verify code?

4.2 A framework for software verification

4.2.1
4.2.2
4.2.3
4.24

A core programming language
Hoare triples
Partial and total correctness
Program variables and logical variables

4.3 Proof calculus for partial correctness

4.3.1
4.3.2
4.3.3

Proofrules
Proof tableaux
A case study: minimal-sum section

4.4 Proof calculus for total correctness

4.5 Bibliographicnoteso L 0oL

Modal Logics and Agents
5.1 Modesof truth
5.2 Basic modal logic oo

5.2.1
5.2.2

Syntax
Semantics

5.3 Logic engineering L.

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

The stock of valid formulas
Important properties of the accessibility relation
Correspondence theory
Some modal logics oL
Semantic entailment

5.4 Natural deduction o0
5.5 Reasoning about knowledge in a multi-agent system

5.5.1
5.5.2
5.5.3
5.5.4

Some examples L.
The modal logic KT45™
Natural deduction for KT45™
Formalising the examples

5.6 Bibliographicnotes L.

Binary Decision Diagrams

6.1 Representing boolean functions
6.1.1
6.1.2

Propositional formulas and truth tables
Binary decision diagrams

222
226

228
229
230
232
235
238
241
242
242
246
264
270
273

27/
274
275
275
276
286
287

. 201

293
297
301
302
306
306
309
315
317
328

330
330
331
333

www.manharaa.com

vi Contents

6.1.3 Ordered BDDs 340

6.2 Algorithms for reduced OBDDs 348
6.2.1 The algorithm reduce 348

6.2.2 The algorithm apply 350

6.2.3 The algorithm restrict. 357

6.2.4 The algorithm exists 359

6.2.5 Assessment of OBDDs oL 361

6.3 Symbolic model checking 365
6.3.1 Representing subsets of the set of states 365

6.3.2 Representing the transition relation 369

6.3.3 Implementing the functions preg and prey 370

6.3.4 Synthesising OBDDs 372

6.4 The relational p-calculuso 375
6.4.1 Syntax and semantics 376

6.4.2 Coding CTL models and specifications 380

6.5 Bibliographicnotes o 00 388
Index 389
Bibliography 399

www.manharaa.com

Preface

Our motivation for writing this book

Recent years have brought about the development of powerful tools for veri-
fying specifications of hardware and software systems. By now, the I'T indus-
try has realized the impact and importance of such tools in their own design
and implementation processes. Major companies, such as Intel, Siemens,
BT, AT&T, and IBM, are now actively investigating this technology and its
incorporation into their planning and production departments. This neces-
sitates the availability of a basic formal training which allows undergraduate
students as well as working programmers and beginning graduate students
to gain sufficient proficiency in using and reasoning with such frameworks.

The recent shift of information technologies toward internet-based data
access and processing means that there is also an increased demand in quali-
fied individuals who can reason about sophisticated autonomous agent-based
software which is able to interact with other agents and gather desired in-
formation on large networks.

This book addresses these needs by providing a sound basis in logic, fol-
lowed by an introduction to the logical frameworks which are used in mod-
elling and reasoning about computer systems. It provides simple and clear
presentation of material. A carefully chosen core of essential terminology
is introduced; further technicalities are introduced only where they are re-
quired by the applications.

We believe that our proposed course material makes a vital contribution
to preparing undergraduate students for today’s fast paced and changeable
professional environments. This confidence stems not only from the topical-
ity of our proposed applications, but also from the conviction that a solid
background in logical structures and formalisms can very well serve as a
buoy in the rough waters of future software and hardware developments.

www.manaraa.com

2 PREFACE

There is an abundance of books on mathematical logic or logic in computer
science on the market. However, we are not aware of any book that suits
the contemporary and applications-driven courses that we teach and are
beginning to be taught in most computer science curricula. Existing books
tend to be written for logicians rather than computer science students and
are thus too “heavy”, and overloaded with technical terminology. The ties
to computer science are merely of a foundational nature, such as the Curry-
Howard isomorphism, or cut-elimination in sequent calculi. There is an
evident need for a book which introduces the contemporary applications of
logic which are beginning to be taken up by industry; the book should be
accessible to students who do not want to learn logic for its own sake.

It is important to say what the book does not provide: we completely
omitted applications like the design and use of theorem-provers, and the
exposure to constructive type theories (such as the Calculus of Construc-
tions and the Logical Framework) as a mathematical foundation for program
synthesis; and the design, analysis and implementation of programming lan-
guages. This decision is by no means meant to represent a judgment of
such topics. Indeed, we hope and anticipate that others will address these
important issues in a text that is suitable for undergraduates.

Reasons for adopting this book

Our book zooms in on concepts at the heart of logic and presents them in a
contemporary fashion. In that way, and by discussing the implementation
of such principles, our material creates stimulating overlaps with other stan-
dard courses such as Formal Language Theory or an Introduction to Data
Types and Programminyg.

It differs from existing books on that subject in the following ways:

e New technical concepts are introduced as they are needed, and never for
their own sake. The emphasis is always on applications rather than on
mathematical technicalities. Yet, technicalities are always treated with
the necessary rigour.

e We introduce, at an accessible level, a framework for program verification
(symbolic model checking) which is currently available only in research
papers. This is at present a hot topic in industry, and graduates fluent in
this material are highly sought.

e Our text is supplemented by a wordwide web site' which offers additional

www.cs.bham.ac.uk/research/lics/

www.manaraa.com

PREFACE 3

material useful for classroom presentations; such as postscript files of fig-
ures for online, or overhead projector, presentations; and html files of all
the SMV code featured in the book.

e All sections of the book have several exercises marked with an * as in

EXERCISES 0.1
* 1.

2.
* 3.
4.

for which we have provided sample solutions in IMTEX. Bona fide teachers
and instructors may obtain the postscript files directly from Cambridge
University Press. Exercises end with a short bar, as shown, in order that
the reader know where to pick up the text.

Outline of the book

One of the leitmotifs of our book is the observation that most logics used in
the design, specification, and verification of computer systems fundamentally
deal with a satisfaction relation

ME¢

where M is some sort of situation or model, like the snapshot of a system,
and ¢ is a specification, a formula of that logic, expressing what should
be true in situation M. For example, M could model a communications
protocol and ¢ the property that the protocol be fair. At the heart of this
setup is that F is actually computable in a compositional way. Fixing the
situation M, we determine whether M E ¢ holds by recursively determining
this for all subformulas of ¢. We expand this view for a particular logic
(CTL), where this computation and the modelling of a situation may be
done purely symbolically using boolean formulas. Tools which support this
reasoning make the approach applicable to quite a few realistic systems and
designs.

Here is a brief synopsis of what the book covers:

Chapter 1, on propositional logic, should be the common starting point
and backbone for any course based on this book; it might also be
used as a reference text for courses that presuppose a knowledge of
propositional logic. Its sections provide

www.manaraa.com

4 PREFACE

e a complete presentation of a natural deduction style proof sys-
tem for propositional logic with a discussion of the intuitionistic
fragment;

e a section on propositional logic as a formal language;

e the semantics of propositional logic, where:

— we constructively prove soundness and completeness of the proof
system with respect to the usual truth table semantics;

— we discuss the notions of equivalence, satisfiability, and validity;

— we cover the principle of mathematical induction, which is needed
for soundness, often employed in our book, and is one of the cen-
tral reasoning tools in computer science; and

— we feature a section on disjunctive normal forms and Horn
formulas; our presentation highlights the development of algo-
rithms computing such normal forms as well as discussing their
correctness.

Chapter 2 addresses predicate logic. In this chapter we

e first motivate the need for richer logics via symbolic representa-
tions of natural language sentences;

e define and study predicate logic as a formal language with the
standard notions of static scoping (free and bound variables) and
substitution;

e familiarize students with its semantics,

e introduce a natural deduction style proof system for predicate logic
by “enriching” the proof system of Chapter 1 with the introduction
and elimination rules for quantifiers; we use this system to prove
the standard quantifier equivalences; and

e present Church’s proof of the undecidability of satisfaction in pred-
icate logic (via reduction to the Post correspondence problem).

Chapter 3 introduces students to model checking, a state-of-the-art tech-
nique in verifying concurrent systems. We

e focus on the syntax and semantics of CTL (Computation Tree
Logic), and derive the standard algorithm for model checking CTL
formulas;

e let students practice the synthesis and interpretation of practically
relevant, and frequently occurring, specifications in CTL;

e present two case studies in great detail: a mutual exclusion proto-
col and an alternating bit protocol; both protocols are developed
as labelled transition systems;

www.manaraa.com

PREFACE 5

e introduce the symbolic model verifier SMV, and provide SMV code
for our case studies and discuss the relevant CTL specifications;

e explain how CTL and SMV manage to incorporate fairness con-
straints;

e discuss the logics LTL and CTL* and compare their expressive
power to that of CTL;

e give a fixed-point characterization of those CTL operators which
express invariant behaviour; and

e conclude by pointing out that practical specifications often obey
common patterns and offer pointers to web-sites, where such pat-
terns are developed, surveyed, and documented.

Chapter 4 covers program verification by discussing deductive reasoning
about imperative programs; it presents a Floyd-Hoare style program
logic for a sequential imperative core programming language, remi-
niscent to a fragment of the C programming language. The emphasis
will be on correctness proofs (partial and total correctness) for fairly
simple programs. The main objective is to challenge students to sys-
tematically develop small programs meeting required input/output
behaviour. In particular, they need to develop the ability to come
up with characterizing invariants of while-loops.

Chapter 5 discusses modal logics and agents. Modal logics are motivated
through a desire to have possible world semantics.

e We discuss general syntax, semantics, and an extension of the
propositional logic deduction calculus for basic modal logic. The
theme of the first part of this chapter is that of “logic engineering”:
e.g. if O¢ means that an agent knows ¢, then what axioms and
inference rules for O should we engineer? We carry out such a task
for various meanings of 0.

e The second part of this chapter is devoted to the study of a modal
logic modelling general reasoning about knowledge in a Multi-
Agent System (KT45"). It carefully explains how some epistemo-
logical puzzles can be solved using this modal logic.

Chapter 6 introduces binary decision diagrams, which are a data structure
for boolean functions.

e We describe ordered binary decision diagrams (OBDDs) and their
accompanying algorithms;

e We discuss extensions and variations of OBDDs as well as their
limitations;

e We explain how CTL models can be coded as boolean formulas;

www.manaraa.com

6 PREFACE

e We present the syntax and semantics of the relational mu-calculus
within which we code CTL models and their specification in the
presence of simple fairness constraints.

That chapter should create stimulating links to courses on algo-
rithms and data structures, courses on circuit design, and can also be
used as a foundation for implementation projects which develop tools
supporting reasoning with the concepts developed in other chapters.

At the end of each chapter, we provide pointers to the literature and to sites
where free software may be downloaded, if applicable. A detailed index
should allow for the quick discovery of cross-connections between most of
these chapters.

Dependency of chapters and prerequisites. The book requires that
students know the basics of elementary arithmetic and naive set theoretic
concepts and notation. The core material of Chapter 1 (everything except
Sections 1.4.3 to 1.5.3) is essential for all of the chapters that follow. Other
than that, only Chapter 6 depends on Chapter 3, and a basic understand-
ing of the static scoping rules covered in Chapter 2 although one may
easily cover Sections 6.1 and 6.2 without having done Chapter 3 at all. The
dependency graph of chapters can be seen below:

Suggested course outlines

We suggest at least three different ways of teaching with this text (based on
a 12-15 week course).

e A course based on Chapters 1, 2, and 5 would be suitable for students
specialising in database and information systems or artificial intelligence;
this choice of material should prepare them for more advanced topics in
database programming and automated deduction.

www.manaraa.com

PREFACE 7

e A course based on Chapters 1, 3, and 6 would focus on the complete
development of a verification framework for concurrent systems down to
the implementation level.

e A course based on Chapters 1, 3, and 4 would provide a broader presen-
tation of the logical foundations of programming.

Suitable courses based on the book. This book can be used as the
main text book in a course on the introduction to logic in computer science,
and the specification and verification of computer systems and programs.
It may be quite useful as an additional text in courses on algorithms and
data structures, the introduction to logic in artificial intelligence, sequential
circuit and chip design and validation, discrete mathematics for computer
scientists, formal language theory, as well as courses in networks and oper-
ating systems.

WWW page
This book is supported by a WWW page, which contains a list of errata,
the SMYV source code for examples in Chapter 3, some further exercises, and
details of how to obtain the solutions to exercises in this book which are
marked with a x. There are also links to other relevant pages. The URL for
the book’s page is

Www.cs.bham.ac.uk/research/lics/

www.manharaa.com

Acknowledgments

Many people have, directly or indirectly, assisted us in writing this book.
David Schmidt kindly provided serveral exercises for Chapter 4. Krysia
Broda has pointed out some typographical errors, and she and the other
authors of [BEKV94] have allowed us to use some exercises from that book
(notably Exercises 1.6(1(b)), 2.2(5), 2.5(4, 9, 10)). We also borrowed exer-
cises or examples from [Hod77] and [FHMV95]. Zena Matilde Ariola, Josh
Hodas, Jan Komorowski, Sergey Kotov, Scott A. Smolka and Steve Vickers
have corresponded with us about this text; their comments are appreciated.
Matt Dwyer and John Hatcliff made useful comments on drafts of Chapter 3.
A number of people read and provided useful comments on several chapters,
including: Graham Clark, Christian Haack, Anthony Hook, Achim Jung,
Kevin Lucas, Roberto Segala, Alan Sexton, and Allen Stoughton. Numer-
ous students at Kansas State University and the University of Birmingham
have given us feedback of various kinds, which have influenced our choice
and presentation of the topics. We acknowledge Paul Taylor’s N TEX package
for proof boxes. About half a dozen anonymous referees made critical, but
constructive comments which helped to improve this text in various ways.
In spite of these contributions, there may still be errors in the book, and we
alone must take responsibility for those.

www.manharaa.com

ABP, 201
acknowledgment channel, 201
alternating the control bit, 201
fairness, 201
main SMV program, 204
absorption laws, 84
abstract data type
sets, 190
abstraction, 163, 192, 205
and non-determinism, 194
accessibility relation, 277, 291, 311
adequate set of connectives
for CTL, 179, 180, 185, 207, 210, 385
for propositional logic, 80, 99
agent, 275, 289, 298
algebraic specification, 158
algorithm
deterministic, 85
algorithm apply, 350
complexity, 361
control structure, 351
recursive descent, 352
algorithm CNF, 85
algorithm reduce, 348
complexity, 361
algorithm restrict, 357
complexity, 361
algorithm reduce
example execution, 350
alternating bit protocol, 201
always in the future, 289
and-elimination, 15, 316
and-introduction, 15, 316
application domain, 161, 228
approach
model-based, 161
proof-based, 161
approximants
umZ.f, 378
vm Z.f, 378
arity, 106, 107
array, 235
bounds, 264

Index

field, 264
of integers, 264
section, 264
artificial intelligence, 274
artificial language, 100
assignment, 193
initial, 268
non-deterministic, 202, 206
program notation, 233
statement, 163, 233
associativity laws, 81, 84
assumption
discharging, 40, 302
stack of assumptions, 67
temporary, 21, 136
asynchronous
circuit, 330
interleaving, 182
atom
marking, 95
atomic formula, 309
of modal logic, 275
of predicate logic
meaning, 141
axiom
5, 304, 305
T, 318
4, 299, 304, 315
5, 304, 315
T, 299, 304, 315, 320
for assignment, 243
for equality, 120
for modal logic, 297
instance, 244
schemes, 301

Backus Naur form (BNF), 48

backwards breadth-first search, 188, 207

base case, 60, 61, 65
basic modal logic, 275
BDD, 338

hi(n), 349

lo(n), 349

390

www.manharaa.com

as boolean function, 338
complement, 340
consistent path, 339
edge, 333
examples, 338
has an ordering, 341
layer of variables, 333
line
dashed, 334, 338
solid, 334, 338
ordered, 341
read-1, 357
reduced, 338
removal of duplicate non-terminals, 337
removal of duplicate terminals, 337
removal of redundant tests, 337
satisfiable, 339
subBDD, 336
which is not a read-1-BDD, 358
which is not an OBDD, 342
with duplicated subBDDs, 336
belief, 289
binary decision diagram, 338
binary decision tree, 333
redundancies in, 335
binding priorities, 165
for basic modal logic, 275
for integer expressions, 232
for KT45", 310
for predicate logic, 109
for propositional logic, 13
for relational mu-calculus, 376
bit, 154
control, 201
least significant, 363
most significant, 363
one-bit channel, 202
two-bit channel, 202
blocks of code, 233
Boole, G., 98, 351
boolean algebra, 29
boolean connective, 166, 278
boolean existential quantification, 359
boolean expression, 233, 245
boolean forall quantification, 361
boolean formula
independent of a variable, 352
semantically equivalent, 351
truth table, 331
boolean function
‘don’t care’ conditions, 355
as a binary decision tree, 333
symbolic representation, 330
boolean guard, 258
boolean variable, 330
bottom, 32
bottom-elimination, 33
bottom-introduction (see “not-elimination”),
33
box-elimination, 303
box-introduction, 303

Index 391

branching-time logic, 162

case
overlap, 88
case analysis, 87, 89, 126
case-statement, 28, 194
characteristic function, 366
Church, A.; 153
circuit
2-bit comparator, 374
asynchronous, 197, 373
sequential, 331
synchronous, 197, 330, 373, 385
circular definition, 180
Clarke, E.; 163, 227
classical logic, 42, 300
client, 231
clock tick, 184
closure under propositional logic, 297
CNF, 81
code
specification, 229
verification, 229
coding
AF | 382
EF, 381
EG, 382
EU, 382
EX, 381
examples of symbolic evaluation, 382
fair EG, 386
fair EU, 386
fair EX, 386
set of fair states, 385
command, 233
atomic, 233
compound, 233
common knowledge, 306, 310
as invariant, 375
communicating processes, 228
communication protocol, 197
completeness
of natural deduction for predicate logic, 103
of natural deduction for propositional logic,
78
complexity
exponential, 190
of apply, 356
of brute force minimal-sum section
algorithm, 265
of fairness, 386
of labelling algorithm, 187, 188
of labelling EG¢, 207
composition
sequential, 252
synchronous, 196
compositional semantics, 57
compositionality
in model checking, 193
computability, 152
computation

www.manharaa.com

392

intractable, 70
computation path, 171
fair, 207
computation trace, 260
computation tree logic, 163, 274, 289
computational behaviour, 274
computer program, 114
concatenation, 142, 153
conclusion, 12, 246, 257
concurrency, 229
conjunct, 82
conjunction, 12, 267
infinite, 310
connective
adequate set, 190
unary, 165
consistency, 151, 276, 287
constant symbol, 111
contradiction, 31, 132, 289, 296
control structure, 233, 234
controlling value, 356
copy rule, 30, 303
core programming language, 232, 264
correspondence theory, 297
counter example, 140, 149, 287, 305
counter trace, 162
critical section, 181
CTL, 163, 227, 274, 289
as a subset of CTL*, 211
expressive power, 213
modalities, 274
model checker, 193
with boolean combinations of path
formulas, 213, 214
CTL connectives
fair, 385
CTL formula
square brackets, 166
CTL*, 210, 227

dag, 338
dashed box
flavour, 315
data structure, 141
de Morgan laws, 83, 179, 215
for modalities, 282
deadlock, 168, 177, 212
debugging systems, 185, 229
decision problem, 152
of validity in predicate logic, 153
decision procedure, 79
declarative explanation, 38
declarative sentence, 10, 100
truth value, 55
default case, 194
definition
inductive, 48
description
informal, 230, 236, 265
language, 160, 162
Dijkstra, E., 259

Index

directed graph, 168, 337
acyclic, 338
cycle, 337
disjunction, 12
of literals, 81, 83
distributivity laws
of box modality, 282
of F connective, 209
of propositional logic, 29, 84, 87
dividend, 263
don’t care links, 369
double negation-elimination, 301
double negation-introduction, 301

elimination rule, 15, 120
Emerson, E. A., 163, 227
encoding, 146
entailment

in program logics, 251
environment

and non-determinism, 194

for concurrent programs, 161

for predicate logic formulas, 144
equality, 235

intentional, 120

program notation, 233

symbol, 119
equivalence relation, 292, 298, 314
equivalent formulas

of basic modal logic, 283

of CTL, 178-180

of KT4, 299

of KT45, 298

of LTL, 209

of predicate logic, 132

of propositional logic, 26, 179

of relational mu-calculus, 380
exclusive-or, 333, 364
existential quantifier, 179
exists-elimination, 126
exists-introduction, 126

factorial
of a natural number, 234
program, 234, 260
fairness
nested fixed points, 386
symbolic model checking, 385
fairness constraint, 184, 197
simple, 205, 206
FAIRNESS running, 202
Fibonacci numbers, 76
field index, 264
finite automata, 358
finite data structure, 185
first order logic, 100
fixed point, 218
greatest, 218, 219
least, 218, 219
semantics for CTL, 180, 215
flow of control, 234

www.manharaa.com

Floyd, R., 242
for-loop, 235
forall-elimination, 122
forall-introduction, 123
formal
path, 211
formula
height, 63, 77
Horn, 94
immediate subformula, 186
of basic modal logic, 282
of CTL, 164
atomic, 164
ill-formed, 165
well-formed, 165
of LTL
valid, 215
of predicate logic, 109, 250
of propositional logic, 48, 71, 178
well-formed, 47, 48, 63
of relational mu-calculus, 376
positive, 300, 319, 325
scheme, 179, 280, 288
K, 283
in propositional logic, 280
instance, 280
subformula, 50
frame, 293
free for z in ¢, 117, 122
Frege, G., 158
function
in predicate logic, 142
monotone, 218
a non-example, 218
recursive, 181
SAT, 189, 191
termination, 226
SATaf, 192, 216
SATag, 226
SATeg, 193
SATeu, 192
SATex, 191
symbol, 104, 105, 111
binary, 106
translate, 181
function preg(X), 368
function prey(X), 368
function SAT
correctness, 218
future
excludes the present, 176, 301
includes the present, 174, 176, 301
whether it includes the present, 289
world, 162

G-reachable, 312
in k steps, 312
Godel, K., 103
Gentzen, G., 98
grammar, 48
clause, 242

Index

Halpern, J., 227

Hoare triple, 236
Hoare, C.A.R., 236, 242
Hodges, W., 158

Horn clause, 94

hybrid rule, 320

if-statement, 255
implication, 12
logical, 251
implies-elimination, 18
implies-introduction, 21
in-order representation, 51
inconsistency, 231
index, 153
induction
course-of-values, 63
hypothesis, 60, 61
in model checking, 192
mathematical, 60
inductive step, 60
infix notation, 142, 166
information
negative, 320
information content, 32
input parameter, 87
integer
expression, 232
integer label, 348
integer multiplication, 363
interface between logics, 250
interleaving
formulas with code, 248
transitions, 182, 197
introduction rules, 15, 120
introspection
negative, 290, 298
positive, 290, 298

intuitionistic logic, 42, 134, 299

invariants, 246
discovering, 258
iterative squaring, 388

Jape, 158
justification, 249, 250, 303

Knaster-Tarski Theorem, 219
knowledge
common, 307
distributed, 310
false, 292
formula
positive, 320
idealised, 290, 298
in a multi-agent system, 275
modality, 309
of agent, 275, 290
Kozen, D., 388
Kripke model, 277
as a counter example, 305
for KT45™, 311

393

www.manharaa.com

394
Kripke, S., 277, 283

label

adding, 186

deleting, 187
labelling

AF, 186

EG, 187

EG¢, 207

EU, 186

EX, 186
labelling algorithm, 185
labelling function

coding subsets, 366

for CTL model, 168

for Kripke model, 277

frame does not have one, 294
language construct, 235
law of excluded middle, 38
laws of arithmetic, 250
LEM

instance, 300
linear-time logic, 162
linear-time temporal logic, 208
literal, 81, 89
liveness, 183, 197

property, 181, 183, 204, 206
logic engineering, 275, 286
logic programming, 70, 158
logical level, 251
look-up table, 144

up-dated, 144
LTL, 208, 227

machine state, 235
Manna, Z., 227
McMillan, K., 227
memoisation
of computed OBDDs, 352
midcondition, 249
minimal-sum section, 264
minimal-sum section problem, 273
modal connective
Cga, 310
K;, 309
modal logic, 274
K, 298
KT4, 299
KT45, 298
normal, 297
S4, 299
S5, 298
modality, 162, 276
diamond, 276
path, 213
model
of KT45™, 311
of basic modal logic, 277, 296
of CTL, 168, 278
pictorial representation, 168, 176, 177
of intuitionistic propositional logic, 300

Index

of KT45, 311
of KT45™, 312
of predicate logic, 103, 142
of propositional logic, 57
model checker, 162
model checking, 161, 163, 228
algorithm, 180, 189, 206, 289
debugging, 381
example, 175
with fairness constraints, 206
model of CTL, 168
model-based verification, 160, 162
module, 237
modulo 8 counter, 375
modus ponens, 18
modus tollens, 19, 300
muddy children puzzle, 317, 320
Mutex model
pictorial representation, 182
mutual exclusion, 181

natural deduction
extension to predicate logic, 103
for modal logic, 306
for temporal logic, 162
inventor, 98
natural deduction rules
for basic modal logic, 303
for KT45™, 316, 327
for predicate logic, 120
for propositional logic, 39
necessity
logical, 162, 276, 288
physical, 288
negation, 12
negation-elimination (see
“bottom-elimination”), 33
negation-introduction, 33
nested boolean quantification, 381
network
architecture, 163
synchronous, 162
no strict sequencing, 182, 183
node
initial, 338
leaf, 114
non-terminal, 333
terminal, 334, 338
non-blocking protocol, 181, 183
non-determinism, 162, 183
non-termination, 234
normal form, 78, 80
conjunctive, 81, 332
disjunctive, 332
negation, 86
CTL*, 211
LTL, 210
product-of-sums, 363
sum-of-products, 356
not-elimination, 33
not-introduction, 33

www.manharaa.com

OBDD, 341
absence of redundant variables, 346
canonical form, 343
complementation, 368
definition, 341
extensions, 364
for preg(X), 370
for prey(X), 370
integer multiplication, 363
intersection, 368
limitations, 363
memoisation, 352
nested boolean quantification, 362
of an even parity function, 344
of the odd parity function, 344
of transition relation, 369
optimal ordering, 364
reduced, 342
unique representation, 342
reduced one for logical “iff”, 344
representing subsets, 365
running-time of algorithms
upper bounds, 362
sensitivity of size, 346
synthesis of boolean formula, 362
test
for implication, 347
for satisfiability, 347
for semantic equivalence, 346
for validity, 347
union, 368
variations, 364
odd parity function, 344
omniscience
logical, 289, 290
or-elimination, 27
or-introduction, 27
overloading, 148
of proof rules, 120

parity function

even, 343
as OBDD, 344
parity OBDD, 364
parse tree

for a predicate logic formula, 114
of a term, 108
of a basic modal logic formula, 275
of a CTL formula, 166
of propositional logic formula, 49
root, 50
subtree, 50
underspecified, 280
partial correctness, 238
partial order reduction, 192
pattern
checkEU (f, g), 386
checkEX (f), 386
pattern matching, 15, 125, 253
place holder, 101
Pnueli, A., 227

Index

possibility, 286
logical, 162, 276
possible world
semantics, 283
Post correspondence problem, 153
postcondition
in program logic, 236
Prawitz, D., 98
precondition
in program logic, 236
weakest, 249
of algorithm, 90
predicate, 100
binary, 102
number of arguments, 102
symbols, 108
unary, 102
predicate logic, 100
extension, 250
prefix, 142
notation, 166
ordering, 142
premise, 12, 243
preprocessing, 190
Prior, A., 227
problem
instance, 153
reduction, 152
procedural interpretation, 40
process
concurrent, 181
instantiation, 204
processor, 229
program
behaviour, 237
bug, 229
code, 249
construct, 233
correctness, 90, 96, 189
derived, 235
diverging, 238
documentation, 229
environment, 230
finite-state, 330
fragment, 235
logic, 248
methodology, 231
procedures, 235
sequential, 228
termination, 96, 97, 219, 238
variable, 190, 241
verification, 243
formal, 232
program execution, 286, 290
programming language
imperative, 232
proof
box
for —i, 21
for forall-introduction, 123
for modal logic, 302

395

www.manharaa.com

396

opening, 40
side by side, 33
by contradiction, 37
calculus, 228, 232
construction, 242
constructive, 134
dashed box, 303, 317
fragment, 252
indirect, 42
of correctness, 216
of termination, 238
partial, 255
partial correctness, 242, 254
search, 70
solid box, 303
strategy, 129, 237
subproof, 245
tableaux, 242
theory, 100, 139, 162
total correctness, 270
proof rules, 14
for implication, 246
for assignment, 242
for conjunction, 15
for disjunction, 26
for double negation, 17
for equality, 120
for existential quantification, 126
for if-statements, 245, 255
modified, 256
for implication, 21, 250
for KT45™, 316
for negation, 31
for quantifiers, 125
for sequential composition, 242, 248
for universal quantification, 122
for while-statements, 246, 258, 264
schema, 125
subformula property, 127
proof tableaux
complete, 268
proof-based verification, 160, 228
proposition, 10
propositional logic, 100
protocol, 181, 182
provability
undecidability of predicate logic, 157

quantifier, 279, 282
equivalences, 209
in predicate logic, 102
binding priorities, 109
equivalences, 148
meaning, 141
Quielle, J., 227

reasoning
about knowledge, 298, 306
constructive, 42
in an arbitrary related world, 303
informal, 319

Index

quantitative, 231
unsound, 254
record
field, 196
recursion
mutual, 211
recursive call, 255
reductio ad absurdum, 37, 133, 152
reduction to absurdity, 37
regular language, 358
relation
binary, 163, 168
Euclidean, 292, 298
functional, 292
linear, 292
reflexive, 292
as formula, 121
serial, 292, 302
symmetric, 292, 301
as formula, 121
total, 292, 301
transition, 168
transitive, 292, 295
as formula, 121
relational mu-calculus
explicit substitution, 376
fixed-point operators, 378
restriction, 351
root of a parse tree, 155

rule
derived, 36
hybrid, 19

safety property, 181, 183, 204
satisfaction

in a frame, 294

in a frame for KT45™, 312
satisfaction relation

for relational mu-calculus, 376

for basic modal logic, 278

for CTL, 169

for KT45, 311

for LTT., 209

for partial correctness, 238

for predicate logic, 145

for relational mu-calculus, 377

for total correctness, 238
satisfiability, 332

3SAT, 363

deciding, 94

of a predicate logic formula, 148

of a propositional logic formula, 59

undecidability of predicate logic, 156
SCC

fair, 207
scheduler

fair, 199
scope

of a dummy variable, 131

of a variable, 114, 115, 127

of an assumption, 40, 127, 302

www.manharaa.com

search space, 127, 153
semantic entailment
for basic modal logic, 281
for K'T45, 300
for normal modal logics, 301
for predicate logic, 103
for propositional logic, 66
for relational mu-calculus, 380
semantic equivalence, 56
semantics
of uZ.f, 378
of vZ.f, 378
of basic modal logic, 278
of boolean quantification, 377
of CTL, 168
of EG, 217
of equality, 150
of predicate logic, 139
of propositional logic, 57
of relational mu-calculus, 377
of Until, 174
sentence
atomic, 12
components, 100
declarative, 100
in predicate logic, 145
sequent, 14
invalid, 76
unsound, 130
Shannon expansion, 351
side condition, 120, 123
Sifakis, J., 227
SMV, 166, 227
main program for ABP, 204
module, 195
receiver, 203
sender, 202
for channel, 203
instantiation, 195
process, 373
program
example, 194
for Mutex, 197
specification, 194
soundness
of forall-elimination, 122
of natural deduction
basic modal logic, 306
predicate logic, 103, 139
propositional logic, 65
of program logics, 240
of proof rule for while-statements, 258
of the substitution principle, 121
SPEC, 194, 202
specification
as CTL formula, 193
for ABP, 204
formal, 231
informal, 231
language, 160
of a predicate, 111

Index

patterns, 227
practical pattern, 177
symmetric, 183
truth table, 83
Spin, 227
state
critical, 182
explosion, 190, 191
explosion problem, 227
fair, 386
formula, 211
global, 182
graph, 171
initial, 183, 184, 193, 205, 236
non-critical, 182
of a system, 242
reachable, 205
resulting, 235, 236
space, 191
splitting states, 183
transition, 163
trying, 182
storage
location, 265
state, 233
string, 167, 275
binary, 142, 153
empty, 142
strongly connected component, 188
structural induction, 63, 72
substitution
in predicate logic, 116
instance, 294
instance of tautology, 283
principle, 120
symbolic model checking, 365
symbolic model verifier, 193
syntactic
category, 85, 98
domain, 232, 233
syntax
of basic modal logic, 275
of boolean expressions, 233
of boolean formulas, 333
of CTL, 164
of CTL*, 211
of Horn formulas, 98
of KT45™, 310
of literals, 85
of LTL, 208
of predicate logic, 109
of propositional logic, 48
of relational mu-calculus, 376
of terms, 107
system
asynchronous, 227
interleaving model, 374
simultaneous model, 374
axiomatic, 99
commercial-critical, 160, 229
component, 204

397

www.manharaa.com

398

concurrent, 161
debugging, 162
description, 195
design, 162
development, 161
elevator, 177, 214
finite-state, 228
hybrid, 250
infinite-state, 228
mission-critical, 160
multi-agent, 306
physical, 163

reactive, 161, 229, 330
safety-critical, 160, 229
transition, 162
verification, 228

tautology, 71
temporal connective

AF, 170

AG, 170

AU, 170

AX, 169

EF, 170

EG, 170

EU, 170

EX, 170
temporal connectives, 164
temporal logic, 162, 274
term, 106

interpretation, 145
term-rewriting system, 158
termination

proof, 238
tertium non datur, 37
theorem, 23

prover, 118, 157

proving, 158
time

continuous, 162

discrete, 162
top, 32
total correctness, 238
transition relation, 168

for SMV programs, 372
transition system, 162

of ABP program, 205

of Mutex code, 200

of SMV program, 194

unwinding, 171, 185
translation

English into predicate logic, 102, 109
tree, 242

infinite, 171
truth

dynamic, 162

mode, 274, 276

of knowledge, 298

static, 162

value

for predicate logic, 144

Index

for propositional logic, 11
truth table
for conjunction, 55
truth tables, 57
type, 21, 299
checking, 22
theory, 158

unary connective, 275
undecidability

of provability, 157

of satisfiability, 156

of validity in predicate logic, 153
universal quantification, 241
universal quantifier, 179
universe of concrete values, 142
unsound sequent, 158
Until, 174

in natural language, 174

negating, 209

weak, 213
updated valuation, 377

validity
in basic modal logic, 282
in KT45™, 313
in propositional logic, 59
undecidability in predicate logic, 153
valuation
in predicate logic, 140
in propositional logic, 57
in relational mu-calculus, 376
value
initial, 204, 241, 242
variable, 101, 163, 232
boolean, 190, 205, 330
bound, 114
capture, 117
dummy, 123
free, 114
local, 235
logical, 241, 267
variable ordering
compatible, 342
list, 341
variant, 270
verification
full, 161
method, 160
of communication protocols, 163
of hardware, 163
of software, 163
of systems, 228
post-development, 161, 229
pre-development, 161, 229
process, 244
program, 243
property, 161
property-oriented, 228
semi-automatic, 228
techniques, 160

www.manharaa.com

Index 399

weak Until, 213
in CTL, 214
in CTL*, 214
in LTL, 214
weakest precondition, 249
while-statement, 233, 234
body, 246, 258, 261
non-termination, 270
wise men puzzle, 317
word
empty, 142
world
possible, 277, 311
related, 277

year 2000 problem, 230

www.manharaa.com

o AJLb

Bibliography

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
C-27(6):509-516, 1978.

[AO91] K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent
Programs. Springer-Verlag, 1991.

[Bac86] R. C. Backhouse. Program Construction and Verification. Prentice Hall,
1986.

[BCMT90] J. R. Burch, J. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 1020 states and beyond. In IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press, 1990.

[BEKV94] K. Broda, S. Eisenbach, H. Khoshnevisan, and S. Vickers. Reasoned
Programming. Prentice Hall, 1994.

[BJ80] G. Boolos and R. Jeffrey. Computability and Logic. Cambridge University
Press, 2nd edition, 1980.

[Boo54] George Boole. An Investigation of the Laws of Thought. Dover, New York,
NY, USA, 1854.

[Bra91] J. C. Bradfield. Verifying Temporal Properties of Systems. Birkhaeuser,
Boston, Mass., 1991.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Compilers, C-35(8), 1986.

[Bry91] R. E. Bryant. On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Applications to Integer
Multiplication. IEEE Transactions on Computers, 40(2):205-213, February
1991.

[Bry92] R. E. Bryant. Symbolic Boolean Manipulation with Ordered
Binary-decision Diagrams. ACM Computing Surveys, 24(3):293-318,
September 1992.

[CE81] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In D. Kozen, editor, Logic of Programs
Workshop, number 131 in LNCS. Springer Verlag, 1981.

[CGLI3] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state
concurrent systems. In A Decade of Concurrency, number 803 in Lecture
Notes in Computer Science, pages 124 175. Springer Verlag, 1993.

[CGLY4] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and
Abstraction. ACM Transactions on Programming Languages and Systems,
16(5):1512 1542, September 1994.

400

www.manaraa.com

Bibliography 401

[Che80] B. F. Chellas. Modal Logic — an Introduction. Cambridge University Press,
1980.

[Dam96] D. R. Dams. Abstract Interpretation and Partition Refinement for Model
Checking. PhD thesis, Institute for Programming research and Algorithmics.
Eindhoven University of Technology, July 1996.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DP96] R. Davies and F. Pfenning. A Modal Analysis of Staged Computation. In
238rd Annual ACM Symposium on Principles of Programming Languages.
ACM Press, January 1996.

[EN94] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems.
Benjamin/Cummings, 1994.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge, 1995.

[Fit93] M. Fitting. Basic modal logic. In D. Gabbay, C. Hogger, and J. Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 1. Oxford University Press, 1993.

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
2nd edition, 1996.

[Fra92] N. Francez. Program Verification. Addison-Wesley, 1992.

[Fre03] G. Frege. Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet. 1903.
Vol. T and II (Jena).

[Gen69] G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, chapter 3, pages 68—129.
North-Holland Publishing Company, 1969.

[Gol87] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes, 1987.

[Gri82] D. Gries. A note on a standard strategy for developing loop invariants and
loops. Science of Computer Programming, 2:207-214, 1982.

[Ham78] A. G. Hamilton. Logic for Mathematicians. Cambridge University Press,
1978.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576-580, 1969.

[Hod77] W. Hodges. Logic. Penguin Books, 1977.

[Hod83] W. Hodges. Elementary predicate logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume 1. Dordrecht: D. Reidel,
1983.

[Hol90] G. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1990.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333 354, 1983.

[Lee59] C. Y. Lee. Representation of switching circuits by binary-decision
programs. Bell System Technical Journal, 38:985-999, 1959.

[Lon83] D. E. Long. Model Checking, Abstraction, and Compositional Verification.
PhD thesis, School of Computer Science, Carnegie Mellon University, July
1983.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1991.

www.manaraa.com

402 Bibliography

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

[MvdH95] J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for Al and
Computer Science, volume 41 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1995.

[Pap94] C. H. Papadimitriou. Computational Complezity. Addison Wesley, 1994.

[Pau9l] L.C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

[Pnu81] A. Pnueli. A temporal logic of programs. Theoretical Computer Science,
13:45-60, 1981.

[Pop94] S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.

[Pra65] D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist &
Wiksell, 1965.

[QS81] J. P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in cesar. In Proceedings of the fifth International Symposium on
Programming, 1981.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1997.

[SA91] V. Sperschneider and G. Antoniou. Logic, A Foundation for Computer
Science. Addison Wesley, 1991.

[Sch92] U. Schoening. Logik Fir Informatiker. B.I. Wissenschaftsverlag, 1992.

[Sch94] D. A. Schmidt. The Structure of Typed Programming Languages.
Foundations of Computing. The MIT Press, 1994.

[Sim94] A. K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal
Logic. PhD thesis, The University of Edinburgh, Department of Computer
Science, 1994.

[Tay98] R. G. Taylor. Models Of Computation and Formal Languages. Oxford
University Press, 1998.

[Ten91] R. D. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.

[Tur91] R. Turner. Constructive Foundations for Functional Languages. McGraw
Hill, 1991.

[vD89] D. van Dalen. Logic and Structure. Universitext. Springer-Verlag, 3rd
edition, 1989.

[Wei98] M. A. Weiss. Data Structures and Problem Solving Using Java.
Addison-Wesley, 1998.

www.manharaa.com

