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Preface

Our motivation for writing this book

Recent years have brought about the development of powerful tools for veri-
fying specifications of hardware and software systems. By now, the I'T indus-
try has realized the impact and importance of such tools in their own design
and implementation processes. Major companies, such as Intel, Siemens,
BT, AT&T, and IBM, are now actively investigating this technology and its
incorporation into their planning and production departments. This neces-
sitates the availability of a basic formal training which allows undergraduate
students as well as working programmers and beginning graduate students
to gain sufficient proficiency in using and reasoning with such frameworks.

The recent shift of information technologies toward internet-based data
access and processing means that there is also an increased demand in quali-
fied individuals who can reason about sophisticated autonomous agent-based
software which is able to interact with other agents and gather desired in-
formation on large networks.

This book addresses these needs by providing a sound basis in logic, fol-
lowed by an introduction to the logical frameworks which are used in mod-
elling and reasoning about computer systems. It provides simple and clear
presentation of material. A carefully chosen core of essential terminology
is introduced; further technicalities are introduced only where they are re-
quired by the applications.

We believe that our proposed course material makes a vital contribution
to preparing undergraduate students for today’s fast paced and changeable
professional environments. This confidence stems not only from the topical-
ity of our proposed applications, but also from the conviction that a solid
background in logical structures and formalisms can very well serve as a
buoy in the rough waters of future software and hardware developments.
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2 PREFACE

There is an abundance of books on mathematical logic or logic in computer
science on the market. However, we are not aware of any book that suits
the contemporary and applications-driven courses that we teach and are
beginning to be taught in most computer science curricula. Existing books
tend to be written for logicians rather than computer science students and
are thus too “heavy”, and overloaded with technical terminology. The ties
to computer science are merely of a foundational nature, such as the Curry-
Howard isomorphism, or cut-elimination in sequent calculi. There is an
evident need for a book which introduces the contemporary applications of
logic which are beginning to be taken up by industry; the book should be
accessible to students who do not want to learn logic for its own sake.

It is important to say what the book does not provide: we completely
omitted applications like the design and use of theorem-provers, and the
exposure to constructive type theories (such as the Calculus of Construc-
tions and the Logical Framework) as a mathematical foundation for program
synthesis; and the design, analysis and implementation of programming lan-
guages. This decision is by no means meant to represent a judgment of
such topics. Indeed, we hope and anticipate that others will address these
important issues in a text that is suitable for undergraduates.

Reasons for adopting this book

Our book zooms in on concepts at the heart of logic and presents them in a
contemporary fashion. In that way, and by discussing the implementation
of such principles, our material creates stimulating overlaps with other stan-
dard courses such as Formal Language Theory or an Introduction to Data
Types and Programminyg.

It differs from existing books on that subject in the following ways:

e New technical concepts are introduced as they are needed, and never for
their own sake. The emphasis is always on applications rather than on
mathematical technicalities. Yet, technicalities are always treated with
the necessary rigour.

e We introduce, at an accessible level, a framework for program verification
(symbolic model checking) which is currently available only in research
papers. This is at present a hot topic in industry, and graduates fluent in
this material are highly sought.

e Our text is supplemented by a wordwide web site' which offers additional

www.cs.bham.ac.uk/research/lics/
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PREFACE 3

material useful for classroom presentations; such as postscript files of fig-
ures for online, or overhead projector, presentations; and html files of all
the SMV code featured in the book.

e All sections of the book have several exercises marked with an * as in

EXERCISES 0.1
* 1.

2.
* 3.
4.

for which we have provided sample solutions in IMTEX. Bona fide teachers
and instructors may obtain the postscript files directly from Cambridge
University Press. Exercises end with a short bar, as shown, in order that
the reader know where to pick up the text.

Outline of the book

One of the leitmotifs of our book is the observation that most logics used in
the design, specification, and verification of computer systems fundamentally
deal with a satisfaction relation

ME¢

where M is some sort of situation or model, like the snapshot of a system,
and ¢ is a specification, a formula of that logic, expressing what should
be true in situation M. For example, M could model a communications
protocol and ¢ the property that the protocol be fair. At the heart of this
setup is that F is actually computable in a compositional way. Fixing the
situation M, we determine whether M E ¢ holds by recursively determining
this for all subformulas of ¢. We expand this view for a particular logic
(CTL), where this computation and the modelling of a situation may be
done purely symbolically using boolean formulas. Tools which support this
reasoning make the approach applicable to quite a few realistic systems and
designs.

Here is a brief synopsis of what the book covers:

Chapter 1, on propositional logic, should be the common starting point
and backbone for any course based on this book; it might also be
used as a reference text for courses that presuppose a knowledge of
propositional logic. Its sections provide

www.manaraa.com



4 PREFACE

e a complete presentation of a natural deduction style proof sys-
tem for propositional logic with a discussion of the intuitionistic
fragment;

e a section on propositional logic as a formal language;

e the semantics of propositional logic, where:

— we constructively prove soundness and completeness of the proof
system with respect to the usual truth table semantics;

— we discuss the notions of equivalence, satisfiability, and validity;

— we cover the principle of mathematical induction, which is needed
for soundness, often employed in our book, and is one of the cen-
tral reasoning tools in computer science; and

— we feature a section on disjunctive normal forms and Horn
formulas; our presentation highlights the development of algo-
rithms computing such normal forms as well as discussing their
correctness.

Chapter 2 addresses predicate logic. In this chapter we

e first motivate the need for richer logics via symbolic representa-
tions of natural language sentences;

e define and study predicate logic as a formal language with the
standard notions of static scoping (free and bound variables) and
substitution;

e familiarize students with its semantics,

e introduce a natural deduction style proof system for predicate logic
by “enriching” the proof system of Chapter 1 with the introduction
and elimination rules for quantifiers; we use this system to prove
the standard quantifier equivalences; and

e present Church’s proof of the undecidability of satisfaction in pred-
icate logic (via reduction to the Post correspondence problem).

Chapter 3 introduces students to model checking, a state-of-the-art tech-
nique in verifying concurrent systems. We

e focus on the syntax and semantics of CTL (Computation Tree
Logic), and derive the standard algorithm for model checking CTL
formulas;

e let students practice the synthesis and interpretation of practically
relevant, and frequently occurring, specifications in CTL;

e present two case studies in great detail: a mutual exclusion proto-
col and an alternating bit protocol; both protocols are developed
as labelled transition systems;

www.manaraa.com



PREFACE 5

e introduce the symbolic model verifier SMV, and provide SMV code
for our case studies and discuss the relevant CTL specifications;

e explain how CTL and SMV manage to incorporate fairness con-
straints;

e discuss the logics LTL and CTL* and compare their expressive
power to that of CTL;

e give a fixed-point characterization of those CTL operators which
express invariant behaviour; and

e conclude by pointing out that practical specifications often obey
common patterns and offer pointers to web-sites, where such pat-
terns are developed, surveyed, and documented.

Chapter 4 covers program verification by discussing deductive reasoning
about imperative programs; it presents a Floyd-Hoare style program
logic for a sequential imperative core programming language, remi-
niscent to a fragment of the C programming language. The emphasis
will be on correctness proofs (partial and total correctness) for fairly
simple programs. The main objective is to challenge students to sys-
tematically develop small programs meeting required input/output
behaviour. In particular, they need to develop the ability to come
up with characterizing invariants of while-loops.

Chapter 5 discusses modal logics and agents. Modal logics are motivated
through a desire to have possible world semantics.

e We discuss general syntax, semantics, and an extension of the
propositional logic deduction calculus for basic modal logic. The
theme of the first part of this chapter is that of “logic engineering”:
e.g. if O¢ means that an agent knows ¢, then what axioms and
inference rules for O should we engineer? We carry out such a task
for various meanings of 0.

e The second part of this chapter is devoted to the study of a modal
logic modelling general reasoning about knowledge in a Multi-
Agent System (KT45"). It carefully explains how some epistemo-
logical puzzles can be solved using this modal logic.

Chapter 6 introduces binary decision diagrams, which are a data structure
for boolean functions.

e We describe ordered binary decision diagrams (OBDDs) and their
accompanying algorithms;

e We discuss extensions and variations of OBDDs as well as their
limitations;

e We explain how CTL models can be coded as boolean formulas;

www.manaraa.com



6 PREFACE

e We present the syntax and semantics of the relational mu-calculus
within which we code CTL models and their specification in the
presence of simple fairness constraints.

That chapter should create stimulating links to courses on algo-
rithms and data structures, courses on circuit design, and can also be
used as a foundation for implementation projects which develop tools
supporting reasoning with the concepts developed in other chapters.

At the end of each chapter, we provide pointers to the literature and to sites
where free software may be downloaded, if applicable. A detailed index
should allow for the quick discovery of cross-connections between most of
these chapters.

Dependency of chapters and prerequisites. The book requires that
students know the basics of elementary arithmetic and naive set theoretic
concepts and notation. The core material of Chapter 1 (everything except
Sections 1.4.3 to 1.5.3) is essential for all of the chapters that follow. Other
than that, only Chapter 6 depends on Chapter 3, and a basic understand-
ing of the static scoping rules covered in Chapter 2 although one may
easily cover Sections 6.1 and 6.2 without having done Chapter 3 at all. The
dependency graph of chapters can be seen below:

Suggested course outlines

We suggest at least three different ways of teaching with this text (based on
a 12-15 week course).

e A course based on Chapters 1, 2, and 5 would be suitable for students
specialising in database and information systems or artificial intelligence;
this choice of material should prepare them for more advanced topics in
database programming and automated deduction.

www.manaraa.com



PREFACE 7

e A course based on Chapters 1, 3, and 6 would focus on the complete
development of a verification framework for concurrent systems down to
the implementation level.

e A course based on Chapters 1, 3, and 4 would provide a broader presen-
tation of the logical foundations of programming.

Suitable courses based on the book. This book can be used as the
main text book in a course on the introduction to logic in computer science,
and the specification and verification of computer systems and programs.
It may be quite useful as an additional text in courses on algorithms and
data structures, the introduction to logic in artificial intelligence, sequential
circuit and chip design and validation, discrete mathematics for computer
scientists, formal language theory, as well as courses in networks and oper-
ating systems.

WWW page
This book is supported by a WWW page, which contains a list of errata,
the SMYV source code for examples in Chapter 3, some further exercises, and
details of how to obtain the solutions to exercises in this book which are
marked with a x. There are also links to other relevant pages. The URL for
the book’s page is

Www.cs.bham.ac.uk/research/lics/
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a non-example, 218
recursive, 181
SAT, 189, 191
termination, 226
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SATag, 226
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SATeu, 192
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symbol, 104, 105, 111
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function preg(X), 368
function prey(X), 368
function SAT
correctness, 218
future
excludes the present, 176, 301
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in-order representation, 51
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induction
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inductive step, 60
infix notation, 142, 166
information
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integer
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integer multiplication, 363
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interleaving
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for Kripke model, 277
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pictorial representation, 168, 176, 177
of intuitionistic propositional logic, 300

Index

of KT45, 311
of KT45™, 312
of predicate logic, 103, 142
of propositional logic, 57
model checker, 162
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Mutex model
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natural deduction
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for propositional logic, 39
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non-terminal, 333
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non-blocking protocol, 181, 183
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unique representation, 342
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odd parity function, 344
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logical, 289, 290
or-elimination, 27
or-introduction, 27
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parity function

even, 343
as OBDD, 344
parity OBDD, 364
parse tree
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of a basic modal logic formula, 275
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of propositional logic formula, 49
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partial order reduction, 192
pattern
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in program logic, 236
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number of arguments, 102
symbols, 108
unary, 102
predicate logic, 100
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prefix, 142
notation, 166
ordering, 142
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preprocessing, 190
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problem
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reduction, 152
procedural interpretation, 40
process
concurrent, 181
instantiation, 204
processor, 229
program
behaviour, 237
bug, 229
code, 249
construct, 233
correctness, 90, 96, 189
derived, 235
diverging, 238
documentation, 229
environment, 230
finite-state, 330
fragment, 235
logic, 248
methodology, 231
procedures, 235
sequential, 228
termination, 96, 97, 219, 238
variable, 190, 241
verification, 243
formal, 232
program execution, 286, 290
programming language
imperative, 232
proof
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constructive, 134
dashed box, 303, 317
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partial correctness, 242, 254
search, 70
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subproof, 245
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proof rules, 14
for implication, 246
for assignment, 242
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for if-statements, 245, 255
modified, 256
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for negation, 31
for quantifiers, 125
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for universal quantification, 122
for while-statements, 246, 258, 264
schema, 125
subformula property, 127
proof tableaux
complete, 268
proof-based verification, 160, 228
proposition, 10
propositional logic, 100
protocol, 181, 182
provability
undecidability of predicate logic, 157

quantifier, 279, 282
equivalences, 209
in predicate logic, 102
binding priorities, 109
equivalences, 148
meaning, 141
Quielle, J., 227
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about knowledge, 298, 306
constructive, 42
in an arbitrary related world, 303
informal, 319
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unsound, 254
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recursion
mutual, 211
recursive call, 255
reductio ad absurdum, 37, 133, 152
reduction to absurdity, 37
regular language, 358
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binary, 163, 168
Euclidean, 292, 298
functional, 292
linear, 292
reflexive, 292
as formula, 121
serial, 292, 302
symmetric, 292, 301
as formula, 121
total, 292, 301
transition, 168
transitive, 292, 295
as formula, 121
relational mu-calculus
explicit substitution, 376
fixed-point operators, 378
restriction, 351
root of a parse tree, 155

rule
derived, 36
hybrid, 19

safety property, 181, 183, 204
satisfaction

in a frame, 294

in a frame for KT45™, 312
satisfaction relation

for relational mu-calculus, 376

for basic modal logic, 278

for CTL, 169

for KT45, 311

for LTT., 209

for partial correctness, 238

for predicate logic, 145

for relational mu-calculus, 377

for total correctness, 238
satisfiability, 332

3SAT, 363

deciding, 94

of a predicate logic formula, 148

of a propositional logic formula, 59

undecidability of predicate logic, 156
SCC

fair, 207
scheduler

fair, 199
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of a variable, 114, 115, 127
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of vZ.f, 378
of basic modal logic, 278
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of predicate logic, 139
of propositional logic, 57
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of Until, 174
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components, 100
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invalid, 76
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Shannon expansion, 351
side condition, 120, 123
Sifakis, J., 227
SMV, 166, 227
main program for ABP, 204
module, 195
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instantiation, 195
process, 373
program
example, 194
for Mutex, 197
specification, 194
soundness
of forall-elimination, 122
of natural deduction
basic modal logic, 306
predicate logic, 103, 139
propositional logic, 65
of program logics, 240
of proof rule for while-statements, 258
of the substitution principle, 121
SPEC, 194, 202
specification
as CTL formula, 193
for ABP, 204
formal, 231
informal, 231
language, 160
of a predicate, 111
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practical pattern, 177
symmetric, 183
truth table, 83
Spin, 227
state
critical, 182
explosion, 190, 191
explosion problem, 227
fair, 386
formula, 211
global, 182
graph, 171
initial, 183, 184, 193, 205, 236
non-critical, 182
of a system, 242
reachable, 205
resulting, 235, 236
space, 191
splitting states, 183
transition, 163
trying, 182
storage
location, 265
state, 233
string, 167, 275
binary, 142, 153
empty, 142
strongly connected component, 188
structural induction, 63, 72
substitution
in predicate logic, 116
instance, 294
instance of tautology, 283
principle, 120
symbolic model checking, 365
symbolic model verifier, 193
syntactic
category, 85, 98
domain, 232, 233
syntax
of basic modal logic, 275
of boolean expressions, 233
of boolean formulas, 333
of CTL, 164
of CTL*, 211
of Horn formulas, 98
of KT45™, 310
of literals, 85
of LTL, 208
of predicate logic, 109
of propositional logic, 48
of relational mu-calculus, 376
of terms, 107
system
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interleaving model, 374
simultaneous model, 374
axiomatic, 99
commercial-critical, 160, 229
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design, 162
development, 161
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hybrid, 250
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multi-agent, 306
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reactive, 161, 229, 330
safety-critical, 160, 229
transition, 162
verification, 228

tautology, 71
temporal connective

AF, 170

AG, 170

AU, 170

AX, 169

EF, 170

EG, 170

EU, 170

EX, 170
temporal connectives, 164
temporal logic, 162, 274
term, 106

interpretation, 145
term-rewriting system, 158
termination

proof, 238
tertium non datur, 37
theorem, 23

prover, 118, 157

proving, 158
time

continuous, 162

discrete, 162
top, 32
total correctness, 238
transition relation, 168

for SMV programs, 372
transition system, 162

of ABP program, 205

of Mutex code, 200

of SMV program, 194

unwinding, 171, 185
translation

English into predicate logic, 102, 109
tree, 242

infinite, 171
truth

dynamic, 162

mode, 274, 276

of knowledge, 298

static, 162

value

for predicate logic, 144
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for propositional logic, 11
truth table
for conjunction, 55
truth tables, 57
type, 21, 299
checking, 22
theory, 158

unary connective, 275
undecidability

of provability, 157

of satisfiability, 156

of validity in predicate logic, 153
universal quantification, 241
universal quantifier, 179
universe of concrete values, 142
unsound sequent, 158
Until, 174

in natural language, 174

negating, 209

weak, 213
updated valuation, 377

validity
in basic modal logic, 282
in KT45™, 313
in propositional logic, 59
undecidability in predicate logic, 153
valuation
in predicate logic, 140
in propositional logic, 57
in relational mu-calculus, 376
value
initial, 204, 241, 242
variable, 101, 163, 232
boolean, 190, 205, 330
bound, 114
capture, 117
dummy, 123
free, 114
local, 235
logical, 241, 267
variable ordering
compatible, 342
list, 341
variant, 270
verification
full, 161
method, 160
of communication protocols, 163
of hardware, 163
of software, 163
of systems, 228
post-development, 161, 229
pre-development, 161, 229
process, 244
program, 243
property, 161
property-oriented, 228
semi-automatic, 228
techniques, 160
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while-statement, 233, 234
body, 246, 258, 261
non-termination, 270
wise men puzzle, 317
word
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world
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